Design number:

Option number:

Date:

Worksheet for pressure distribution system designLong form with instructions and tablesRev. October 2006

This is an iterative process, so each step may have to be repeated before final design. To be used with the **Design Inputs Worksheet**.

Units: Worksheet and tables are in US gallons. See page 24 for conversions.

A. Design of the Distribution Network:

1 Establish Field length

Based on loading rates and design flows select total length of dispersal unit (trench or bed). It is critical to use a field flow consistent with the flows used by the agency or person who developed the HLR table or formula that you are using. Refer to Design Inputs Worksheet and enter appropriate values below.

SOIL TYPE	= .						
DESIGN HLR	= _		LPD/SQM		=		GPD/SQFT
DESIGN LLR	= _		LPD/M		=		GPD/FT
DAILY DESIGN F	LOW (Q) =	=		LPD	=		GPD
AVERAGE FLOW	=	=	I	LPD	=		GPD
SYSTEM LENGTH	I GUIDE, I	L minimum =	FIELD D	ESIGN FI	LOW (Q)	÷LLR	
$= _ gal per day \div _ gal per foot = _ FEET MINIMUM$ This gives a guideline for minimum overall system length (this is for ALL trenches on a slope or in an area). Note that this may differ in different areas of the field if the laterals are of differing lengths, in which case use the worst case area. Apply to flat and to sloping sites.							
AIS = FIEL	D DESIG	N FLOW / HI	LR =			SQUARI	E FEET
Remember AIS for s TOTAL LENGTH (For bed design use I AIS divided by widt	OF TRENC	CHES/BED	=	ound desig	gn works	FEET heet, or for fix	xed width use
WIDTH OF TRENO Use decimal feet. Is		ed by length	=			FEET	
NETWORK TYPE	(dispersal	system piping	g) =			(eg tre	ench, bed)

2 Establish initial trench layout, Determine lateral lengths

Based on conditions of site select appropriate trench layout and initial manifold position (eg end or center feed or no manifold). Ensure system length meets minimum required.

LATERAL LENGTH	=	Design individually for
center feed.		

NUMBER OF LATERALS =

MOUNDING

If you are concerned about mounding, beyond a simple consideration of LLR consider using a computer model (eg Nova Scotia mound program). Use average flows for mounding modeling.

SKETCH:

Draw a sketch of proposed layout, include constraints. Draw a schematic elevation showing the static head and forcemain length, fittings etc. Use pencil until finalized. Show any sub areas (ie areas of field in separate location but to be dosed at the same time) or zones (areas of field dosed separately).

3 Determine orifice size, spacing, position.

Maximum 6 sqft per orifice, (24" trench this is 36" spacing). Position affects dosing design. Orifice size, for type 1 effluent start with 3/16" and adjust as necessary with respect to dose volume required and pump/force main design. For soils or situations requiring frequent dosing with filtered effluent start with 5/32". For beds, stagger orifices.

	=	FRACTIONAL INCHES	
CE SPACING	=	FEET	
	•	• •	
RAL DIAMETER	=	INCHES	
RAL PIPE CLASS	=		
Determine number	of orific	es per lateral	
number. Based on ori	fices spa	ced min. 1/2 of spacing from ends of infiltrators of	or trenches, and
ft ÷	ft)	+ =	
CES PER LATERAL	=		
Determine lateral d	lischarg	e rate	
			or 3/16" and
AL PRESSURE	=	FEET	
e discharge from ORIF	FICE DI	SCHARGE RATE DESIGN TABLE (page 13), or	calculation.
CE DISCHARGE	=	GPM	
e discharge x number o	of orifice	es per lateral from (A 5) above to give	
RAL DISCHARGE	=	GPM	
ER OR END FEED?	=		
BER OF LATERALS	=		
	Determine lateral p tables LATERAL DES RAL DIAMETER RAL PIPE CLASS Determine number orifice spacing from number. Based on ori action in trench length ft ÷ CES PER LATERAL Determine lateral d distal pressure (pressu or 5 feet for 1/8 and 5. AL PRESSURE e discharge from ORIH CE DISCHARGE e discharge x number of RAL DISCHARGE ER OR END FEED?	CE SPACING=Determine lateral pipe diar tables LATERAL DESIGN TALRAL DIAMETER=RAL DIAMETER=RAL PIPE CLASS=Determine number of orifice spacing from (A 3) ab number. Based on orifices spa uction in trench length for cerrft ÷ft)CES PER LATERAL=Determine lateral discharg distal pressure (pressure at las or 5 feet for 1/8 and 5/32" orification in trench length for cerrAL PRESSURE=e discharge from ORIFICE DIA CE DISCHARGE=e discharge from ORIFICE DIA CE DISCHARGE=e discharge x number of orification=e discharge x number of orific	CE SPACING =FEET Determine lateral pipe diameter and pipe class tables LATERAL DESIGN TABLES (Page 17 onward). RAL DIAMETER =INCHES RAL PIPE CLASS = Determine number of orifices per lateral corifice spacing from (A 3) above into lateral length from (A 2) above, and rou number. Based on orifices spaced min. $\frac{1}{2}$ of spacing from ends of infiltrators of uction in trench length for center feed. If your specification differs, adjust not ft ÷ft) + = CES PER LATERAL = Determine lateral discharge rate distal pressure (pressure at last orifice of longest lateral), minimum is 3 feet for or 5 feet for 1/8 and 5/32" orifices. This is the "Squirt Height". AL PRESSURE =FEET e discharge from <i>ORIFICE DISCHARGE RATE DESIGN TABLE</i> (page 13), or CE DISCHARGE =GPM e discharge x number of orifices per lateral from (A 5) above to give RAL DISCHARGE =GPM

7 Select spacing between laterals and determine manifold length

For trench design spacing at 6 or 10 feet, for beds per design. Use information in (A 2) above.

SPACING BETWEEN LATERALS =	FEET (Between lateral pairs for center
feed)	

MANIFOLD LENGTH = _____ FEET

8 Calculate manifold size

Using information from (A 2) and (A 7) determine manifold length and then use *MAXIMUM MANIFOLD LENGTHS* tables (pages 22 and 23) to select minimum manifold size, using lateral discharge from (A 6) above, Orifice size from (A 3) above and lateral spacing from (A 7) above. For center feed, flow per lateral on either side of manifold is used in table.

MANIFOLD SIZE	=	INCHES
MANIFOLD PIPE CLASS		

9 Determine distribution network discharge rate

Multiply lateral discharge rate from (A 6) above x number of laterals from (A 6) above, check against total number of orifices X orifice discharge rate.

NETWORK DISCHARGE RATE =	GPM	
TOTAL NUMBER OF ORIFICES (γ) =	Xgpm =	GPM

At this point, iterate (repeat) until reasonable flow and manifold size results based on your experience. Adjustments may include reducing orifice size, changing manifold location, manifolding laterals at a central location, splitting to zones. More than one option may be retained for comparison at the next stage– use separate worksheets and number options as required, destroy or label as not used options that you do not use in the final design.

B. Design of the Force Main, Pressurization Unit (Pump or Siphon), Dose Chamber and Controls.

1. Develop a system performance curve.

Determine approximate network head requirement by multiplying Distal pressure (from (A 6) above) x 1.31. This is based on assumption of a household sized system, constructed with normal manifold and lateral layout and normal fittings, if your design varies, adjust accordingly.

NETWORK HEAD REQUIREMENT =FEET	NETWORK HEAD REQUIREMENT	EQU	EQUIRE	EMENT		=]	FEE	Γ					
--------------------------------	--------------------------	-----	--------	-------	--	---	--	--	--	--	---	-----	---	--	--	--	--	--

Determine static head, from off float of pump chamber to highest point of network. If negative take steps to prevent siphoning of pump chamber and, if this is by using an orifice in the discharge piping in the pump chamber, add orifice discharge rate (based on orifice size) to pump discharge and use orifice head (3 feet min) plus lift from pump chamber plus 3 feet min(to avoid negative pipe pressures) subtracted from value of negative elevation difference as static head. For sloping sites and simplified design base Static Head requirement on highest lateral. Consider this when selecting pump.

STATIC HEAD (Indicate if anti siphon required) =	FEET SIPHON?
NETWORK DISCHARGE (from (9) above) =	GPM
NETWORK 2 DISCHARGE (if more than 1 sub area or z	zone 2) = GPM
NETWORK 3 DISCHARGE (if more than 1 sub area or z	zone 3) = GPM
NETWORK 4 DISCHARGE (if more than 1 sub area or z Add more as required.	zone 4) = GPM
ANTI SIPHON/PRIMING ORIFICE DISCHARGE (if us	sed) =GPM
PUMP DISCHARGE Required =	GPM

Sum of maximum network discharge (largest zone) (only add secondary network discharges together if they are sub areas rather than zones–since zones discharge separately) PLUS anti siphon or pump priming orifice discharge. If you have sub zones you may need to add a sheet to address subsidiary forcemains.

Determine friction loss in force main (transport line to field), first select initial force main sizing, use manifold size or next pipe size up. Can use pipe velocity guide (page 16) to select forcemain initial size Base on maximum **network** discharge.

Check that flow velocity is over 2 and under 10 feet per second using table *FRICTION LOSS IN PLASTIC PIPE* (page 14) assuming use of PVC sch 40, then use that table to provide head loss for force main based on system discharge and length,. Add equivalent length for fittings as required from *EQUIVALENT LENGTHS OF FITTINGS* Tables (page 15). **OR** use other friction loss/flow velocity calculation. Note that for end suction pumps it is necessary to also consider losses in the suction piping and fittings, using the same methods.

FORCE MAIN LENGTH α	=	FEET
FORCE MAIN DIAMETER	=	INCHES
FORCE MAIN TRUE INTERNAL DIAMETER	=	INCHES

Only required if not using Sch 40 pipe and the table.

Fittings used, including size.	Number	Equivalent length per fitting	Total equivalent length			
FITTINGS EQUIVALEN	NT LENGTH β	=	FEET			
FOTAL EQUIVALENT	LENGTH $(\alpha + \beta) / 100$	= L =	FEET / 100			
HEAD LOSS PER 100' (from table) =F						
FRICTION LOSS IN FO This is Head loss per 100	RCE MAIN ' times Total Equivalent I	e	FEET			
SUCTION HEAD LOSS Repeat if required for the pump intake for end sucti	suction lines. Ensure no	cavitation. Use manufactu	FEET rer's data for loss in			
SUCTION LIFT (if appli	cable) =		FEET			
NET POSITIVE SUCTION Add lift plus suction head	ON HEAD REQUIRED (1 1 losses.	NPSH) =	FEET			
CHECK FLOW VELOC If not using PD table. V= ft).		FEET PER cross sectional area of the				
TOTAL DYNAMIC HEA TDHR This is Static Head + Net	=	- FE Friction Loss In Forcema	ET ain(s) + NPSH			
PUMP DISCHARGE/HE Develop more than one o type etc.		GPM AT ine impact of changes to r	FEET HEAD network, piping, pump			
Where there are parts of t attendant fittings (perhap	the focemain at different of s at a different diameter a to the TDHR. Also use to	ONE VALVES, EXTRA (diameters, or if you are use lso) add an extra sheet to o develop head losses for	ing a zone valve and develop head loss figures			

2 System curve

Use step 1 several times for discharges either side of the system discharge (if orifice Distal pressure was based on the minimum required squirt height use mainly discharges above the theoretical discharge) to generate a system curve. This takes into account the real world as far as available pumps are concerned to show the operating points for various pumps by plotting the system curve on transparent paper and overlaying various pump curves. This will also point up any calculation errors and give you a graphical representation of the various head requirements of the system. Note that for each new discharge a different Distal Head and thus a different Network Head Requirement is generated based on the orifice flow calculations. Pick discharges that match the increments in the *ORIFICE DISCHARGE RATE DESIGN TABLE*, or use calculation. To facilitate this process, express total flow as equivalent flow per orifice (ie. Flow divided by number of orifices). Remember to add pump chamber office flow (if used) to give total flow, and add in losses at the network flow for additional sections of forcemain, zone valves etc.

NUMBER OF ORIFICES = (γ) From (A 9) above.

TOTAL EQUIVALENT PIPE LENGTH (L) =

FT/100 From (B 1) above.

Squirt height (Distal Head)	Orifice flow at squirt height	Network discharge = (flow per orifice x γ)	Pump/anti siphon orifice discharge, if used	Friction factor (ft loss per 100')	Force main(s) head loss (ft) = friction factor x L	Network head required (1.31 X squirt ht.) (ft)	Static head (ft) plus other losses	TDHR (ft)	Total flow (gpm) = network discharge + pump orifice (if used)

Static head stays the same for all cases except for if using an anti siphon orifice. Add NPSH if necessary, use separate sheet for zone valves, extra forcemains etc.

3 Select pump (or siphon)

Use pump curves and system curves to select pump and determine operating point. Be careful to avoid undesirable pipeline velocities (too high or too low). Ensure pump will provide minimum required squirt height.

ITERATE UNTIL PUMP AND FORCEMAIN ARE ECONOMIC.

PUMP SELECTED = _____Voltage and max. current: _____

Discharge diameter: _____ Height: _____ ft Minimum water level: _____ ft (Recommended is full pump ht, often min. is ½ pump motor submerged).

OPERATING POINT = _____ GPM at _____ FT head. Include manufacturer, series, part number, pump voltage, discharge diameter and HP rating. For larger pumps record breaker size and switch capacity (or magnetic starter) required (do not use breaker larger than pump locked rotor amperage).

4 Determine dose volume

Based on soil type select type of dosing and minimum/desired dose frequency.

Dosing frequency (minimum)	Soil type
Timed dosing	Coarse sand, gravels, sand mounds etc, certain clays
4 X per day	Medium sand, fine sand, loamy sand, Sandy Clay, silty clay or clay
2 X per day	Sandy loam, Loam, Silt Loam, Clay Loam

TYPE OF DOSING (demand or timed) =

DOSE FREQUENCY = min_____ times per day

Determine dose volume, by dividing frequency into DAILY DESIGN flow (from A(1)). For more conservative design, use AVERAGE flow

_____ gpd ÷_____ times per day

DOSE VOLUME = _____GALLONS

Check dose volume against draining volume of network and any part of force main that drains. Ensure dose volume is minimum 5 x the draining volume. If not, consider constraints (soil type etc) and redesign manifold location etc to achieve this. Use *VOLUME OF PIPE* table, page 16.

VOLUME OF LATERALS (if draining) Total length of laterals x volume per foot.	=	ft x	gallons per ft	=g
VOLUME OF MANIFOLD (if draining)	=	ft x	gallons per ft	=g
VOLUME OF PART OF FORCEMAIN	=	ft x	gallons per ft	=g

TOTAL DRAINING VOLUME=GALLONSDOSE VOL. \div TOT DRAINING VOL. =G \div G =(min. 5)

Check pump run time per dose is within manufacturer specifications for minimum run time, often 2 mins. Consider using twin smaller pumps (0.5HP or less) if very short run time is needed.

PUMP RUN TIME = Dose volume ÷ Pump flow rate

 $= \underline{G} \div \underline{GPM} = \underline{MINS}$

Note that in climates where freezing may occur in undrained laterals it may be difficult to attain very small doses. Use smallest dose/most frequent dosing possible. Note other steps to be taken to improve distribution, pump constraints. Notes: For lateral hole positions, draining and distribution:

5. Size pump vault

SPM guideline for small systems; minimum vault sizes for demand activation volume 1 day design flow, for timed dosing 2 times daily design flow. **Timed dosing worksheet is also available**.

DESIGN FLOW =	GPD From section (A 1), peak flow					
DOSE VOLUME	=	GAL	From (B 4)			
For time dose this is the timer allo	ow volume.					
RESERVE VOLUME on float level. Minimum 15% of p (Minimum 67% peak flow with ti		nand dosed systems, pe				
RESERVE VOLUME TO LAG FL	LOAT =	GAL For t	med dose systems only.			
ALARM RESERVE VOLUME allowable liquid level. Minimum can occur during power outage or surcharge of the septic tank.	1	w, consider higher value				
TOTAL MINIMUM VOL. size for initial design trial.	=	GAL	Estimate pump chamber			
PUMP VALUET(S) SIZE(S)		=				

101111	1101) SIEL(S)	
Nominal	size	and	manufacturer	designation.

PUMP MINIMUM WATER LEVEL	= FT From (B 3) above.	
DEPTH REQUIRED FOR PUMP SPACER With effluent filter spacer is only required to preve pumps have suitable legs.	=FEET ent rock chips etc from entering pump. Some	3
Use this information and the float setting worksho float or other control setpoints. Ensure the above ve satisfactory.		termine
PUMP CONTROL FLOAT = If direct control, ensure float is of sufficient capacit	ity.	
FLOAT TETHER LENGTH =	INCHES	
SEPTIC TANK SURCHARGE FOR ALARM VO)L(If	used)
PUMP CHAMBER "V" VALUE =	FT/USGAL	

After installation check that the floats switch as designed. Mark "V", float types, heights, ranges (including tether lengths if required) and dose volume on headworks for future reference. Can use more than one vault to make up required volume. With large vaults can specify smaller pump sub vault to allow float control.

Calculating the Dose Volume For Systems Designed to Drain Back to Pump Chamber:

When draining system back to pump chamber, the volume of effluent in the manifold and transport pipe must be added to the dose volume and considered when sizing the pump chamber Use *VOLUME OF PIPE* table, page 16.

If only part of the system drains back, use appropriate pipe lengths.

Volume in manifold = manifold length x volume in gallons per foot

Volume in manifold = _____ GAL

Volume in Transport Pipe = Transport pipe length x volume in US gallons per foot

Volume in transport pipe = _____ GAL

Total drain back volume = Manifold volume + Transport pipe volume

TOTAL DRAINBACK VOLUME = _____ GAL Add this volume to dose volume and use per dose volume in worksheet.

10 Of 24

TANK FLOAT SETTING WORKS	HEFT JOB NAME	DATE
TANK SELECTED		UNITS us gal / feet
INTERNAL FLOOR AREA = (L - 2 X w	all thickness) X (W - 2 X wall thicknes	ss) = SQ FEET
VOLUME IN ONE FOOT OF DEPTH =	=CUFTX7.48 =	US G PER FOOT
"V" = 1 ÷ VOLUME PER FOOT = 1	÷ =	FEET PER US GALLON
"V" X VOLUME = HEIGHT	HEIGHT ÷	"V" = VOLUME
γ-	ELEVA TIONS	Tank dimensions:
Units:	From tank floor	HT:
		L:
		W:
invert inlet pipe		Wall thickness:
Alarm reserve volume	MAX WL	Lid thickness:
	=	Base thickness:
	2 X ARV	Inlet invert:
		Internal heights:
Alarm float on + Ģ		Inlet invert:
Reserve volume		Tank lid:
Dose volume		
	"v" x ov	
Pump_off_float		
		NOTES
Pump cooling	нт Ример	
Spacer		
CU FT X 7.48 = US GALS ~ CU IN X		
CU METERS X 1000 = LITERS ~ INC		

NOTES

Add other notes on system design and operation requirements.

Orifice Discharge Rate Design Table

The following figures are guidelines based on Toricelli's equation. The orifice coefficients used are intended for use with sharp edged orifices in plastic pipe, with experience of your orifice drilling technique adjust accordingly. Figures in italics are below the recommended minimum head.

	Orifice Discharge Rates (GPM)						
Squirt height (Head) (ft)	Orifice diar	meter (inches)					
	1/8	5/32	3/16	7/32	1/4		
1			0.43	0.58	0.77		
2	0.26	0.41	0.61	0.82	1.09		
3	0.32	0.51	0.74	1.01	1.34		
4	0.37	0.59	0.86	1.17	1.55		
5	0.42	0.65	0.96	1.30	1.73		
6	0.46	0.72	1.05	1.43	1.89		
7	0.50	0.77	1.13	1.54	2.05		
8	0.53	0.83	1.21	1.65	2.19		
9	0.56	0.88	1.28	1.75	2.32		
10	0.59	0.93	1.35	1.84	2.45		
11	0.62	0.97	1.42	1.93	2.57		
12	0.65	1.01	1.48	2.02	2.68		
13	0.68	1.05	1.54	2.10	2.79		
Coefficient used	0.61	0.61	0.62	0.62	0.63		

Orifice discharge rates can be calculated using Toricelli's equation:

$$Q = C_d A_o \sqrt{2gh}$$

Where: Q =the discharge rate in ft³/sec

- C_d = the discharge coefficient (unitless)
- A_0 = the cross sectional area of the orifice in ft^2
- g = the acceleration due to gravity (32.2 ft/sec²)
- h = the residual pressure head at the orifice in ft

Flow (usgpm)	Nominal pipe siz	ze in inches, PV	'C pipe sch 40. For h	neadloss in feet	per 100' of pipr			
		3/4	1	1.25	1.5	2	3	4
1								
2								
3		3.24			this area are und	er 2 feet per secon	d, too low for effec	ctive
4		5.52		scouring.				
5		8.34						
6		11.68	2.88					
7		15.53	3.83					
8		19.89	4.91					
9		24.73	6.10					
10		30.05	7.41	2.50				
11		35.84	8.84	2.99				
12		42.10	10.39	3.51				
13		48.82	12.04	4.07				
14		56.00	13.81	4.66	1.92			
15		56.63	15.69	5.30	2.18			
16		71.69	17.68	5.97	2.46			
17		80.20	19.78	6.68	2.75			
18			21.99	7.42	3.06			
19			24.30	8.21	3.38			
20			26.72	9.02	3.72			
25			40.38	13.63	5.62	1.39		
30			56.57	19.10	7.87	1.94		
35				25.41	10.46	2.58		
40				32.53	13.40	3.30		
45				40.45	16.66	4.11		
50	Velocities in this	s area are over 1	0 feet per second.	49.15	20.24	4.99		
60					28.36	7.00	0.97	
70					37.72	9.31	1.29	
80						11.91	1.66	
90						14.81	2.06	
100						18.00	2.50	0.62
125						27.20	3.78	0.93
150							5.30	1.31
175							7.05	1.74

Head loss in PVC pipe, table Based on table in Converse (2000)

Check with your manufacturer for design aids for other pipe.

	Equivalent Length of Pipe (feet) PVC Pipe Fittings							
Pipe Size (in)90° Elbow45° ElbowThrough Tee RunThrough 								
.5	1.5	0.8	1.0	4.0	1			
.75	2.0	1.0	1.4	5.0	1.5	.55	7.0	
1	2.25	1.4	1.7	6.0	2.0	0.7	9.0	
1.25	4.0	1.8	2.3	7.0	3.0	0.9	11.5	
1.5	4.0	2.0	2.7	8.0	3.5	1.0	10	
2	6.0	2.5	4.3	12.0	4.5	1.0	11	
2 1/2	8.0	3.0	5.1	15.0	5.0	1.0	14	
3	8.0	4.0	6.3	16.0	6.5	1.0	16	
4	12.0	5.0	8.3	22.0	9.0	2.0	22	

Friction loss for fittings, steel pipe

Fitting	Equivalent length in feet per inch of pipe diameter
Angle Valve (fully open)	12.0
Butterfly valve	3.3
Gate valve (fully open)	1.1
Globe valve (fully open)	28.0
Foot valve with strainer	6.3
Swing check valve	11.0
Check valve	12.5
90 deg. Elbow	2.5

From various industry sources. Note that swing check losses vary widely, check with your manufacturer.

VOLUME OF PVC PIPE (US GALLONS PER FOOT)

	PVC pipe class					
Nominal Diameter (in)	SERIES 160	SERIES 200	Schedule 40			
0.75		0.035	0.028			
1	0.058	0.058	0.045			
1.25	0.098	0.092	0.078			
1.5	0.126	0.121	0.106			
2	0.196	0.188	0.174			
2.5	0.288	0.276	0.249			
3	0.428	0.409	0.384			
4	0.704	0.677	0.661			
5	1.076	1.034	1.039			
6	1.526	1.465	1.501			

Guideline pipeline flow velocities

- •Safe design velocity 5 feet/sec (1.5 m/s)
- •Minimum scouring velocity 2 feet/sec
- •Do not exceed 10 feet/sec even in short pipelines

How much flow for 5 feet/sec?

•1" pipe	13 Usgpm	(Sch. 40)	
•1.25" Pipe	23		
•1.5" Pipe	32		
•2" Pipe	52		(59 for SDR26)
•2.5" Pipe	75		
•3" Pipe	115		
•4" Pipe	198		(211 for SDR26)

How much flow for 2 feet/sec?

•1" pipe	5 Usgpm	(Sch. 40)	
•1.25" Pipe	9		
•1.5" Pipe	13		
•2" Pipe	21		(24 for SDR26)
•3" Pipe	46		
•4" Pipe	79		(84 for SDR26)

		n Lateral L	ength (ft)		
Orifice	Lateral	Orifice Spacing		Pipe Materia	.1
(inches)	(inches)	(feet)	Schedule 40	Class 200	Class 160
1/8	1	1.5	42	51	
1/8	1	2	50	62	
1/8	1	2.5	57.5	72.5	
1/8	1	3	66	81	
1/8	1	4	80	96	
1/8	1	5	90	110	
1/8	1	6	102	126	
1/8	1.25	1.5	66	76.5	79.5
1/8	1.25	2	80	92	96
1/8	1.25	2.5	92.5	107.5	110
1/8	1.25	3	105	120	123
1/8	1.25	4	124	144	148
1/8	1.25	5	145	165	175
1/8	1.25	6	162	186	192
1/8	1.5	1.5	85.5	96	100.5
1/8	1.5	2	104	116	120
1/8	1.5	2.5	120	135	140
1/8	1.5	3	135	150	156
1/8	1.5	4	164	184	188
1/8	1.5	5	190	210	220
1/8	1.5	6	210	240	246
1/8	2	1.5	132	141	145.5
1/8	2	2	160	170	176
1/8	2	2.5	185	197.5	202.5
1/8	2	3	207	222	228
1/8	2	4	248	268	276
1/8	2	5	290	310	320
1/8	2	6	324	348	360
5/32	1	1.5	31.5	39	
5/32	1	2	36	46	
5/32	1	2.5	42.5	52.5	
5/32	1	3	48	60	60

			Maximum	n Lateral L	Length (ft		
Orifice	Lateral		Pipe Materia	ıl			
(inches)	(inches)	(feet)	Schedule 40	Class 200	Class 160		
5/32	1	4	56	72	72		
5/32	1	5	65	80	85		
5/32	1	6	72	90	96		
5/32	1 1/4	1.5	48	55.5	58.5		
5/32	1 1/4	2	58	68	70		
5/32	1 1/4	2.5	67.5	77.5	80		
5/32	1 1/4	3	75	87	90		
5/32	1 1/4	4	92	104	108		
5/32	1 1/4	5	105	120	125		
5/32	1 1/4	6	120	138	144		
5/32	1 1/2	1.5	63	70.5	73.5		
5/32	1 1/2	2	76	84	88		
5/32	1 1/2	2.5	87.5	97.5	102.5		
5/32	1 1/2	3	99	111	114		
5/32	1 1/2	4	120	132	136		
5/32	1 1/2	5	140	155	160		
5/32	1 1/2	6	156	174	180		
5/32	2	1.5	96	103.5	106.5		
5/32	2	2	116	124	128		
5/32	2	2.5	135	142.5	147.5		
5/32	2	3	150	162	168		
5/32	2	4	184	196	200		
5/32	2	5	210	225	235		
5/32	2	6	240	252	264		
3/16	1	1.5	24	30			
3/16	1	2	28	36			
3/16	1	2.5	32.5	42.5			
3/16	1	3	39	45			
3/16	1	4	44	56			
3/16	1	5	50	65			
3/16	1	6	60	72			
3/16	1.25	1.5	37.5	43.5	45		
3/16	1.25	2	46	46 54			
3/16	1.25	2.5	52.5 62.5				
3/16	1.25	3	60 69				
3/16	1.25	4	72	84	88		

			Maximun	1 Lateral L	Length (f
Orifice	Lateral		Pipe Materia	ıl	
(inches)	(inches)	(feet)	Schedule 40	Class 200	Class 160
2/16	1.25	5	05	95	100
3/16	1.25	5 6	85		100
3/16	1.25		96	108	114
3/16	1.5	1.5	49.5	55.5	57
3/16	1.5	2	60	68	70
3/16	1.5	2.5	70	77.5	80
3/16	1.5	3	78	87	90
3/16	1.5	4	92	104	108
3/16	1.5	5	110	120	125
3/16	1.5	6	120	138	144
3/16	2	1.5	76.5	81	84
3/16	2	2	92	98	102
3/16	2	2.5	105	112.5	117.5
3/16	2	3	120	129	132
3/16	2	4	144	152	160
3/16	2	5	165	180	185
3/16	2	6	186	198	210
7/32	1	1.5	19.5	24	
7/32	1	2	24	30	
7/32	1	2.5	27.5	35	
7/32	1	3	30	39	
7/32	1	4	36	44	
7/32	1	5	45	55	
7/32	1	6	48	60	
7/32	1.25	1.5	31.5	36	37.5
7/32	1.25	2	38	44	46
7/32	1.25	2.5	42.5	50	52.5
7/32	1.25	3	48	57	60
7/32	1.25	4	60	68	72
7/32	1.25	5	70	80	80
7/32	1.25	6	78	90	90
7/32	1.5	1.5	40.5	46.5	
7/32	1.5	2	50	54	56
7/32	1.5	2.5	57.5	62.5	65
7/32	1.5	3	63	72	75

			Maximun	1 Lateral I	Length (ft)						
OrificeLateralOrifice SpacingPipe Material											
(inches)	(inches)	(feet)	Schedule 40	Class 200	Class 160						
		_									
7/32	1.5	4	76	88	88						
7/32	1.5	5	90	100	105						
7/32	1.5	6	102	114	114						
7/32	2	1.5	63	66	69						
7/32	2	2	76	80	84						
7/32	2	2.5	87.5	92.5	95						
7/32	2	3	99	105	108						
7/32	2	4	116	124	132						
7/32	2	5	135	145	150						
7/32	2	6	156	162	168						
1/4	1	1.5	16.5	21							
1/4	1	2	20	24							
1/4	1	2.5	22.5	27.5							
1/4	1	3	27	33							
1/4	1	4	32	40							
1/4	1	5	35	45							
1/4	1	6	42	48							
1/4	1.25	1.5	27	30	31.5						
1/4	1.25	2	32	36	38						
1/4	1.25	2.5	37.5	42.5	45						
1/4	1.25	3	42	48	48						
1/4	1.25	4	48	56	60						
1/4	1.25	5	55	65	70						
1/4	1.25	6	66	72	78						
1/4	1.5	1.5	34.5	39	39						
1/4	1.5	2	42	46	48						
1/4	1.5	2.5	47.5	52.5	55						
1/4	1.5	3	54	60	63						
1/4	1.5	4	64	72	76						
1/4	1.5	5	75	85	85						
1/4	1.5	6	84	96							
1/4	2	1.5	52.5	58.5							
1/4	2	2	52.5 55.5 64 68								
1/4	2	2.5	72.5	77.5	70 80						

			Maximun	n Lateral L	ength (ft)								
Orifice	Lateral	Orifice Spacing	Pipe Material										
(inches)	(inches)	(feet)	Schedule 40	Class 200	Class 160								
1/4	2	3	81	87	90								
1/4	2	4	100	104	108								
1/4	2	5	115	120	125								
1/4	2	6	126	138	144								

Manifold design tables based on Washington State design manual

These tables can be used to determine maximum manifold lengths for various manifold diameters, lateral discharge rates and lateral spacings. For 6" manifolds see *Washington State design manual*.

The maximum lateral lengths were developed to assure there will be no more than a 10% variance (drop) in the discharge rates between the proximal and distal orifices in any given lateral. The maximum manifold lengths in the tables below were developed to assure there will be no more than a 15% variance in discharge rates between any two orifices in a given distribution system (assuming the system is designed using the above procedure and tables). These tables are quite conservtative.

Two assumptions used to develop these tables are: (1) the maximum variance in orifice discharge rates within a network occurs between the proximal orifice in the first lateral connected to a manifold and the distal orifice on the last lateral connected to the manifold and (2) the friction loss that occurs between the proximal orifice of a lateral and the point where the lateral connects to the manifold is negligible. If your fittings are not normal, additional network head loss may need to be considered.

For marginal situations consider use of series 200 pipe. For situations where feeder pipes are used from a short manifold, design using head loss calculations, on sloped sites the slope assists where top fed feeder pipes are used.

Note that the Central Manifold discharge rates are ¹/₂ the end fed rates—this is because the discharge is PER LATERAL, and with a central manifold there are 2 laterals per lateral spacing.

Instructions:

Example A: Central manifold configuration, lateral discharge "Q" = 40 gpm (this is discharge for each lateral, one both sides of the center manifold), lateral spacing = 6 ft., manifold diameter = 4 inch; Maximum length = 18 ft.

Example B: End manifold configuration, lateral discharge "Q" = 30 gpm, lateral spacing = 6 ft., manifold length = 24 ft.; Minimum diameter = 3 inch

Round flows to nearest number in table.

Make sure you are using the table that matches your orifice size!

Lateral c	lischarge				Ma	axin	num	רא ר	lani	folc	l Le	engt	:h (f	t) F	or 1	/8"	and	d 5/	32"	orif	ice	s ar	nd n	nin.	5' (dista	al p	res	sure	e	
rate (g	pm per											Ν	<i>I</i> lani	fold	diar	nete	er (ir	nche	s), 8	Sche	dule	e 40									
late	eral)			1	1/4					1	1/2					2	2					3	3			4					
															Lat	eral	spa	cing	ı (fe	et)											
Central Manifold	End Manifold	2	3	4	6	8	10	2	3	4	6	8	10	2	3	4	6	8	10	2	3	4	6	8	10	2	3	4	6	8	10
5	10	6	9	8	12	16	10	8	12	12	18	16	20	14	18	20	30	32	40	30	39	48	60	72	80	48	63	76	96	120	130
10	20	4	3	4	6	8	10	4	6	8	6	8	10	8	12	12	18	16	20	18	24	28	36	40	50	30	39	48	60	72	80
15	30	2	3	4				4	3	4	6	8	10	6	6	8	12	8	10	14	18	20	24	32	30	22	30	36	42	56	60
20	40	2						2	3	4	6			4	6	8	6	8	10	12	15	16	18	24	30	18	24	28	36	40	50
25	50							2	3	4				4	6	4	6	8	10	10	12	12	18	16	20	16	21	24	30	40	40
30	60							2						4	3	4	6	8	10	8	9	12	12	16	20	14	18	20	24	32	40
35	70							2						2	3	4	6			8	9	12	12	16	20	12	15	20	24	24	30
40	80													2	3	4				6	9	8	12	16	10	12	15	16	18	24	30
45	90													2	3	4				6	6	8	12	8	10	10	12	16	18	24	20
50	100													2	3					6	6	8	6	8	10	10	12	12	18	24	20
55	110													2	3					4	6	8	6	8	10	8	12	12	18	16	20
60	120													2						4	6	8	6	8	10	8	9	12	12	16	20
65	130													2						4	6	4	6	8	10	8	9	12	12	16	20
70	140													2						4	6	4	6	8	10	8	9	12	12	16	20
75	150																			4	3	4	6	8	10	6	9	8	12	16	20
80	160																			4	3	4	6	8	10	6	9	8	12	16	10
85	170																			4	3	4	6	8		6	9	8	12	16	10
90	180																			2	3	4	6	8		6	6	8	12	8	10
95	190																			2	3	4	6	8		6	6	8	12	8	10
100	200																			2	3	4	6			6	6	8	12	8	10

Latarala	liachargo				M	laxi	mu	m I	Mar	nifol	ld L	enc	ath (ft) F	or :	3/16	6" a	nd	an an	orifi	ces	an	d m	in. 2	2' d	ista	l pro	essi	ure		
	lischarge pm per											ſ	Mani	fold	diar	nete	er (in	iche	s), S	Sche	dule	2 40									
	eral)			1	1/4				1 1/2 2 3											3						4					
								1						1	Lat	eral	spa	cing	(fee	eet)											
Central Manifold	End Manifold	2	3	4	6	8	10	2	3	4	6	8	10	2	3	4	6	8	10	2	3	4	6	8	10	2	3	4	6	8	10
5	10	4	6	4	6	8	10	6	6	8	12	8	10	10	12	16	18	24	20	22	27	32	42	48	60	34	45	52	72	80	90
10	20	2	3	4				2	3	4	6	8		6	6	8	12	8	10	12	15	20	24	32	30	22	27	32	42	48	60
15	30	2						2	3	4				4	6	4	6	8	10	10	12	12	18	24	20	16	21	24	30	40	40
20	40							2						2	3	4	6	8		8	9	12	12	16	20	12	18	20	24	32	30
25	50													2	3	4				6	9	8	12	16	10	10	15	16	18	24	30
30	60													2	3	4				6	6	8	6	8	10	10	12	16	18	24	20
35	70													2	3					4	6	8	6	8	10	8	12	12	18	16	20
40	80													2						4	6	4	6	8	10	8	9	12	12	16	20
45	90																			4	3	4	6	8	10	6	9	8	12	16	20
50	100																			4	3	4	6	8	10	6	9	8	12	16	10
55	110																			2	3	4	6	8		6	6	8	12	8	10
60	120																			2	3	4	6			6	6	8	12	8	10
65	130																			2	3	4	6			6	6	8	6	8	10
70	140																			2	3	4				4	6	8	6	8	10
75	150																			2	3	4				4	6	8	6	8	10
80	160																			2	3	4				4	6	4	6	8	10
85	170																			2	3					4	6	4	6	8	10
90	180																			2	3					4	3	4	6	8	10
95	190																			2	3					4	3	4	6	8	10
100	200																			2						4	3	4	6	8	10

Γ

Conversions

US unit	X	= Metric Unit	X	= US Unit	X	= secondary unit
Gallons	3.785412	Litres	0.264172	Gallons	0.8326738	Imperial Gal.
feet	0.3048	meter	3.28083	ft of head	0.4329004	PSI
Atmosphere	101.325	Кра	0.1450377	PSI	0.06894757	Bar (=100 Kpa)
				Gallons	0.1336806	cu ft
		Cu m	35.31467	cu ft	7.480519	gallons
GPD/sqft	40.74648	Lpd/sqm	0.024542	GPD/sqft		
GPD/ft	12.418	Lpd/m	0.080528	GPD/ft		
Sq ft	0.0929	Sq m	10.76391	Sq ft		
Inches	0.0254	Meters	39.36996	Inches		
Feet	0.3048	Meters	3.28083	Feet		

Gallons in this worksheet are US unless shown as "IG".

References

This worksheet developed by Ian Ralston, TRAX Developments Ltd. Based on *Pressure Distribution Network Design By James C. Converse January, 2000* and *Recommended Standards and Guidance For Pressure Distribution, by Washington State Department of Health.*

For Converse's papers see: <u>http://www.wisc.edu/sswmp/</u>

For Washington State guidelines see: http://www.doh.wa.gov/ehp/ts/WW/

See also

http://www.traxdev.com/ES930/

For the most current version of this worksheet, the Design Inputs Worksheet, Timed Dosing Worksheet, and for a short form version of this worksheet, without tables and instructions (for use as part of a record of design).