Design number:

Date: Option number:

Worksheet for pressure distribution system design Rev. October 2006

This is an iterative process, so each step may have to be repeated before final design. To be used with the **Design Inputs Worksheet** and **instructions** in the **Long Form Worksheet (LFW)**. **Units: Worksheet and tables are in US gallons. See page 10 for conversions.**

A. Design of the Distribution Network:

1 Establish Field length

Refer to Design Inputs Worksheet and enter appropriate values below.

SOIL TYPE	=		-		
DESIGN HLR	=	_LPD/SQM	=	GP	D/SQFT
DESIGN LLR	=	LPD/M	=	GP	D/FT
DAILY DESIGN FI	LOW (Q) =]	LPD =	GI	PD
AVERAGE FLOW	=		PD =	GI	PD
SYSTEM LENGTH	GUIDE, L minimu	m = FIELD DE	SIGN FLOW ($(Q) \div LLR$	
=g	al per day ÷	gal per foot	=	FEET MINI	MUM
AIS = FIEL				SQUARE FEE	Τ
<i>Remember AIS for se</i> TOTAL LENGTH (1 0 11			FEET	
WIDTH OF TRENC	CH/BED	=		FEET	
NETWORK TYPE ((dispersal system pip	ping) =		(eg trench,	bed)

2 Establish initial trench layout, Determine lateral lengths

Based on conditions of site select appropriate trench layout and initial manifold position (eg end or center feed or no manifold). Ensure system length meets minimum required.

MANIFOLD TYPE = _____ LATERAL LENGTH = _____

MOUNDING

If you are concerned about mounding, beyond a simple consideration of LLR consider using a computer model (eg Nova Scotia mound program). Use average flows for mounding modelling.

SKETCH:

Draw a sketch of proposed layout, include constraints. Draw a schematic elevation showing the static head and forcemain length, fittings etc. Use pencil until finalized. Show any sub areas (ie areas of field in separate location but to be dosed at the same time) or zones (areas of field dosed separately).

3 Determine orifice size, spacing, position.

ORIFICE SIZE	=	FRACTIONAL INCHES				
ORIFICE SPACING	=	FEET				
4 Determine lateral pipe diameter and pipe class Using tables <i>LATERAL DESIGN TABLES</i> (Page 17 LFW onward).						
LATERAL DIAMETER	=	INCHES				
LATERAL PIPE CLASS	=					

Divide orifice spacing from (A 3) above into lateral length from (A 2) above, and round to nearest whole number. Based on orifices spaced min. $\frac{1}{2}$ of spacing from ends of infiltrators or trenches, and no reduction in trench length for center feed. If your specification differs, adjust number.

(______ft ÷ _____ft) + _____ = _____

ORIFICES PER LATERAL =

6 Determine lateral discharge rate

Select distal pressure (pressure at last orifice of longest lateral), minimum is 3 feet for 3/16" and larger or 5 feet for 1/8 and 5/32" orifices. This is the **"Squirt Height"**.

DISTAL PRESSURE	=	FEET
Use ORIFICE DISCHARGE	RATE D	DESIGN TABLE (page 13 LFW), or calculation.
ORIFICE DISCHARGE	=	GPM
Orifice discharge x number of	of orifice	es per lateral from (A 5) above to give
LATERAL DISCHARGE	=	GPM
CENTER OR END FEED?	=	
NUMBER OF LATERALS	=	

7 Select spacing between laterals and determine manifold length

For trench design spacing at 6 or 10 feet, for beds per design. Use information in (A 2) above.

SPACING BETWEEN LATERALS =	FEET

MANIFOLD LENGTH = _____ FEET

8 Calculate manifold size

Using information from (A 2) and (A 7) determine manifold length and then use *MAXIMUM MANIFOLD LENGTHS* tables (pages 22 and 23 LFW) to select minimum manifold size, using lateral discharge from (A 6) above, Orifice size from (A 3) above and lateral spacing from (A 7) above. For center feed, flow per lateral on either side of manifold is used in table.

MANIFOLD SIZE	=	INCHES
MANIFOLD PIPE CLASS		

Multiply lateral discharge rate from (A 6) above x number of laterals from (A 6) above, check against total number of orifices X orifice discharge rate.

NETWORK DISCHARGE RATE =	GPM	
TOTAL NUMBER OF ORIFICES $(\gamma) =$	Xgpm =	GPM

B. Design of the Force Main, Pressurization Unit (Pump or Siphon), Dose Chamber and Controls.

1. Develop a system performance curve.		
Distal pressure (from (A 6) above) x 1.31. =	feet 2	X 1.31 =
NETWORK HEAD REQUIREMENT =	FEE1	
Determine static head, from off float of pump chamber to highe	st point of ne	twork.
STATIC HEAD (Indicate if anti siphon required) =	FEE	T SIPHON?
NETWORK DISCHARGE (from (9) above) =		GPM
NETWORK 2 DISCHARGE (if more than 1 sub area or zone 2) =	GPM
NETWORK 3 DISCHARGE (if more than 1 sub area or zone 3) =	GPM
NETWORK 4 DISCHARGE (if more than 1 sub area or zone 4 Add more as required.) =	GPM
ANTI SIPHON/PRIMING ORIFICE DISCHARGE (if used)	=	GPM
PUMP DISCHARGE Required =		GPM

Determine friction loss in force main (transport line to field), first select initial force main sizing, use manifold size or next pipe size up (guide pg 16 LFW). Base on maximum **network** discharge.

Check that flow velocity is over 2 and under 10 feet per second using table *FRICTION LOSS IN PLASTIC PIPE* (page 14 LFW) assuming use of PVC sch 40, then use that table to provide head loss for force main based on system discharge and length,. Add equivalent length for fittings as required from *EQUIVALENT LENGTHS OF FITTINGS* Tables (PAGE 15 LFW). **OR** use other friction loss/flow velocity calculation. Note that for end suction pumps it is necessary to also consider losses in the suction piping and fittings, using the same methods.

FORCE MAIN LENGTH α = _____FEET

FORCE MAIN TRUE INTERNAL DIAMETER = _____ INCHES Only required if not using Sch 40 pipe and the table.

=

Fittings used, including size.	Number	Equivalent length per fitting	Total equivalent length
FITTINGS EQUIVALEN	IT LENGTH β	=	FEET
TOTAL EQUIVALENT	LENGTH $(\alpha + \beta) / 100$	= L =	FEET / 100
HEAD LOSS PER 100' (1	from table)	=	
FRICTION LOSS IN FO This is Head loss per 100'		=	FEET
SUCTION HEAD LOSS	(if applicable) =		FEET
SUCTION LIFT (if appli	cable) =		FEET
NET POSITIVE SUCTION Add lift plus suction head		NPSH) =	FEET
CHECK FLOW VELOCI If not using PD table. V= ft).		FEET PER cross sectional area of the	
TOTAL DYNAMIC HEA TDHR This is Static Head + Netw	=	FE Friction Loss In Forcema	
PUMP DISCHARGE/HE	AD =	GPM AT	FEET HEAD
ADDITIONAL SECTION	NS OF FORCEMAIN, ZO	ONE VALVES, EXTRA (DRIFICES

Add sheets as required for additional forcemain sections, zone valves etc.

2 System curve

NUMBER OF ORIFICES = (γ) From (A 9) above.

TOTAL EQUIVALENT PIPE LENGTH (L) =

FT/100 From (B 1) above.

Squirt height (Distal Head)	Orifice flow at squirt height	Network discharge = (flow per orifice x γ)	Pump/anti siphon orifice discharge, if used	Friction factor (ft loss per 100')	Force main(s) head loss (ft) = friction factor x L	Network head required (1.31 X squirt ht.) (ft)	Static head (ft) plus other losses	TDHR (ft)	Total flow (gpm) = network discharge + pump orifice (if used)

Static head stays the same for all cases except for if using an anti siphon orifice. Add NPSH if necessary, use separate sheet for zone valves, extra forcemains etc.

3 Select pump (or siphon)

Use pump curves and system curves to select pump and determine operating point. Be careful to avoid undesirable pipeline velocities (too high or too low). Ensure pump will provide minimum required squirt height.

ITERATE UNTIL PUMP AND FORCEMAIN ARE ECONOMIC.

PUMP SELECTED = _____Voltage and max. current: _____

Discharge diameter: _____ Height: _____ ft Minimum water level: _____ ft (Recommended is full pump ht, often min. is ½ pump motor submerged).

OPERATING POINT = _____ GPM at _____ FT head.

=

4 Determine dose volume

Based on soil type select type of dosing and minimum/desired dose frequency.

Dosing frequency (minimum)	Soil type
Timed dosing	Coarse sand, gravels, sand mounds etc, certain clays
4 X per day	Medium sand, fine sand, loamy sand, Sandy Clay, silty clay or clay
2 X per day	Sandy loam, Loam, Silt Loam, Clay Loam

TYPE OF DOSING (demand or timed)

Determine dose volume, by dividing frequency into DAILY DESIGN flow (from A(1)). For more conservative design, use AVERAGE flow

_____ gpd ÷ _____ times per day

DOSE VOLUME = _____GALLONS

Check dose volume against draining volume of network and any part of force main that drains. Ensure dose volume is at least 5 x the draining volume. If not, consider constraints (soil type etc) and redesign manifold location etc to achieve this. Use *VOLUME OF PIPE* table, page 16 LFW.

VOLUME OF LATE Total length of latera			=		_ft x	_gallons p	per ft	=	_g
VOLUME OF MAN	IFOLD	(if draining)	=		_ft x	_gallons p	per ft	=	_g
VOLUME OF PART	r of fc	RCEMAIN	=	ft x	gallo	ns per ft	=	g	
TOTAL DRAINING	VOLU	ME		= _			GA	ALLONS	
DOSE VOL. + TOT	DRAIN	NING VOL. =		G ÷		G =		(5 to 10)	
Check pump run time	e per do	se.							
PUMP RUN TIME	=	Dose volume	÷ Pump	o flow rat	te				
	=	G÷		_GPM =	=	MINS			

Note that in climates where freezing may occur in undrained laterals it may be difficult to attain very small doses, equal distribution is the primary priority. Note other steps to be taken to improve distribution. Use smallest dose/most frequent dosing possible. Notes for lateral hole positions and draining:

5. Size pump vault

SPM guideline for small systems; minimum vault sizes for demand activation volume 1 day design flow, for timed dosing 2 times daily flow.

DESIGN FLOW =	(GPD From section (A 1), peak flow
DOSE VOLUME	=	GAL From (B 4)
RESERVE VOLUME on float level. Minimum	= 15% of peak flow for deman	GAL To alarm float from pump nd dosed systems, per design for timed dose

(Minimum 67% peak flow for small systems with lag/override operation).

RESERVE VOLUME TO LAG FLOAT =	GAL For timed dose systems only.
	GAL Above alarm float to highest w, consider higher value for case where water flow this may also include reserve volume provided by
TOTAL MINIMUM VOL. =	GAL Estimate pump chamber
PUMP VAULT(S) SIZE(S) Nominal size and manufacturer designation.	=
PUMP MINIMUM WATER LEVEL	= FT From (B 3) above.
DEPTH REQUIRED FOR PUMP SPACER	=FEET
Use this information and the float setting worksh setpoints. Ensure the above volumes will fit in the	
PUMP CONTROL FLOAT = If direct control, ensure float is of sufficient capac	eity.
FLOAT TETHER LENGTH =	INCHES
CHECK AGAINST VAULT INTERNAL DEPTH	HIterate as required
SEPTIC TANK SURCHARGE FOR ALARM VO	DL(If used)
After installation check that the floats switch as do (including tether lengths if required) and dose vol-	
Calculating the Dose Volume For Syste Chamber:	ems Designed to Drain Back to Pump
Use VOLUME OF PIPE table, page 16 LFW.	
Volume in manifold = manifold length x volume	in gallons per foot
Volume in manifold =	GAL
Volume in Transport Pipe = Transport pipe length	n x volume in US gallons per foot
Volume in transport pipe =	GAL
Total drain back volume = Manifold volume + Tra	ansport pipe volume
TOTAL DRAINBACK VOLUME = Add this volume to dose volume and use per dose	GAL volume in worksheet.

TANK ELOAT SETTING WORKS	HEET JOB NAME	DATE
TANK SELECTED		UNITS us gal / feet
INTERNAL FLOOR AREA = (L - 2 X wa	all thickness) X (W - 2 X wall thicknes	s) = SQ FEET
VOLUME IN ONE FOOT OF DEPTH =	CUFTX7.48 =	US G PER FOOT
"V" = 1 ÷ VOLUME PER FOOT = 1 ÷	· =	FEET PER US GALLON
"V" X VOLUME = HEIGHT	HEIGHT ÷	"V" = VOLUME
~-		Tank dimensions:
Units:	ELEVATIONS From tank floor	HT:
		L:
		W:
Invertiniet pipe		Wall thickness:
Alarm reserve volume		Lid thickness:
	<i>#KL</i> . 	Base thickness:
		Inlet invert:
	~ * X ARV	Internal heights:
Alarm_float_on		Inlet invert:
Reserve volume		Tank lid:
	"" X RV	
Pump on float		
Dose volume		
	"v" x ov	
		NOTES
Pump cooling	нт Римр	
Sporer		
CU FT X 7.48 = US GALS ~ CU IN X	LIS GALS	
CU METERS X 1000 = LITERS ~ INC		

-

Conversions

US unit	X	= Metric Unit	Х	= US Unit	Х	= secondary unit
Gallons	3.785412	Litres	0.264172	Gallons	0.8326738	Imperial Gal.
feet	0.3048	meter	3.28083	ft of head	0.4329004	PSI
Atmosphere	101.325	Кра	0.1450377	PSI	0.06894757	Bar (=100 Kpa)
				Gallons	0.1336806	cu ft
		Cu m	35.31467	cu ft	7.480519	gallons
GPD/sqft	40.74648	Lpd/sqm	0.024542	GPD/sqft		
GPD/ft	12.418	Lpd/m	0.080528	GPD/ft		
Sq ft	0.0929	Sq m	10.76391	Sq ft		
Inches	0.0254	Meters	39.36996	Inches		

Gallons in this worksheet are US unless shown as "IG".

References

This worksheet developed by Ian Ralston, TRAX Developments Ltd. Based on *Pressure Distribution Network Design By James C. Converse January, 2000* and *Recommended Standards and Guidance For Pressure Distribution, by Washington State Department of Health.* **To be used only with instructions in the Long Form Worksheet (LFW).**

For Converse's papers see: <u>http://www.wisc.edu/sswmp/</u>

For Washington State guidelines see: http://www.doh.wa.gov/ehp/ts/WW/

See also

http://www.traxdev.com/ES930/

For the most current version of this worksheet, the Design Inputs Worksheet, Timed Dosing Worksheet, and for the long form of this worksheet (LFW), with tables and instructions.